Two papers on Organic Efficiency using SFA

Mayen, C.D., Balagtas, J.V., & Alexander, C.E. (2010)

- Questions:
 - 1. Can organic and conventional dairy production be treated as having unique technologies?
 - 2. How do measures of technical efficiency compare when computed against the appropriate technology versus a meta-frontier?
- Contributions:
 - 1. Handles self-selection into organic using selection on observables (PSM)
 - 2. Formal test of organic and conventional technologies after controlling for selection
 - 3. Comparison of efficiency results with and without appropriate technological frontiers

Methods (conceptual)

- SFA
 - normal distribution of error term and half-normal distribution of inefficiency
 - heteroscadasticity in both (using different exogenous parameters)
 - reference Hadri, German, and Whittaker (2003)

- Note that they write out the log-likelihood function given their parametric assumptions and the measure of technical efficiency.
- Cobb-Douglas production function
- Propensity Score Matching: self-selection into organic production
 - Might be concerned that estimated differences in technology are actually capturing differences in the characteristics of operators who choose to opt into organic farming.
 - propensity score matching is a selection-on-observables approach to handling endogenous regime selection
 - the main limitation to PSM is that we cannot select on unobservables, the authors address this limitation at the bottom of pg. 184
- final model is a three step procedure:
 - (1) probability model they use Probit
 - (2) match each organic farm to probability neighbors they use single nearest neighbor, so that each organic farm is compared with one conventional farm and this is the farm with the nearest p(organic) value given their observable characteristics.
 - (3) SFA using remaining in-sample observations.

Why do we have N=137 for the matched conventional farms?

What do we see when we compare means in the variables used in the profit analysis?

Table 1.	Description	, Units, and	Statistics for	Variables	Included i	in the Study
		.,,				

	Organic $(N = 288)$		Conventional $(N = 1, 194)$		Matched Conventional ^a (N = 137)	
Inputs and Output per Cow	Mean	SE	Mean	SE	Mean	SE
Herd size (cows)	81.1	12.7	140.1	8.7	65.3	5.6
Milk production	12,333	225	17,0	153**	14,81	422**
Feed (lb/Year)	11,457	414	15,1	242**	14,14	633**
Labor (hrs/Year)	93.9	3.2	81.1	1.5	102.5	4.5
Capital costs (\$/Year)	305	8	300	3	297	8
Other inputs (\$/Year)	428	20	578	11*	500	23
Pasture acres (Acres)	1.62	0.07	0.61	0.03*	1.22	0.12
Operator and farm						
Upper Midwest (1/0)	0.44	0.03	0.41	0.01*	0.44	0.04
East (1/0)	0.41	0.03	0.27	0.01*	0.40	0.04
Cornbelt (1/0)	0.09	0.02	0.15	0.01*	0.05	0.02*
West (1/0)	0.06	0.01	0.11	0.01*	0.06	0.02
Southwest (1/0)	0	0	0.02	0.01*	0.01	0.01*
Southeast (1/0)	0	0	0.06	0.01*	0.04	0.02*
Parlor (1/0)	0.40	0.03	0.49	0.01*	0.19	0.03*
Automatic Takeoffs	0.23	0.02	0.37	0.01*	0.19	0.03
Years in Dairy	20.8	0.7	23.4	0.4	25.0	1.1
Years in Organic	5.1	0.2	0	0	0	0
Cow Weight (Lb)	1,177	11	1,29	6***	1,239	16*
Pasture-based (1/0)	0.88	0.02	0.30	0.01*	0.44	0.04*
Age (Years)	48.4	0.6	51.2	0.3	52.1	0.9
Years in Industry	23.0	0.7	25.9	0.4	28.0	1.0
College education	0.19	0.02	0.16	0.01*	0.12	0.03*
Off-Farm work	130	28	143	14	134	32
Planning Horizon (1/0)	0.66	0.03	0.48	0.01*	0.46	0.04*
Management practices						
Use of rbST (%)	0	0	8.0	0.6*	2.0	1.0
Veterinary (1/0)	0.39	0.03	0.70	0.01*	0.41	0.04*
Nutritionist (1/0)	0.45	0.03	0.73	0.01*	0.51	0.04*
DHIA participation (1/0)	0.48	0.03	0.47	0.01	0.29	0.04*
Seasonal dry-off (1/0)	0.12	0.02	0.21	0.01*	0.26	0.04*
Farm-raised herd (%)	96.7	0.9	92.7	0.7	92.9	1.9
Farm-raised Feed (%)	68.1	1.7	66.1	0.8	70.3	2.2
Rented Land (%)	33.1	1.9	30.3	0.9	31.7	2.3

Note: Asterisks denote a statistically significant difference with the organic mean at the 10 percent (*), 5 percent (**), and 1 percent (***) levels. ^aThe subsample of conventional farms matched to organic farms on the basis of the estimated likelihood, or propensity, to produce organic milk.

	Coefficient	S.E.
Constant	13.146	2.419***
East	0.231	0.117**
West	0.459	0.172***
Cornbelt	-0.499	0.165***
Pasture acres per cow	0.345	0.044***
Cows	-0.371	0.079***
Farm-raised feed	0.128	0.052**
Rented land	0.073	0.031**
Cow weight	-1.407	0.292***
Parlor	-0.419	0.132***
Automatic takeoffs	-0.025	0.131
Years in dairy production	0.063	0.127
DHIA participation	0.272	0.109**
Veterinary services	-0.524	0.111***
Nutritionist	-0.458	0.117***
Seasonal dry-off	-0.939	0.139***
Age	-0.753	0.339**
Planning horizon	0.493	0.109***
College education	0.129	0.126
McFadden Pseudo		0.419
R - Squared		
Conventional dairy farms		96%
correctly predicted		
Organic dairy farms correctly predicted	у	57%

 Table 2. Probit Estimates of the Propensity to

 Produce Organic Milk

Note: Asterisks denote statistical significance at the 10% (*),5% (**), and 1% (***) levels.

How do SFA results compare after PSM compared with before? (Is this what you would expect?)

Table 3. Stochastic Production Frontier Estimates, PSM Subsample^a

Same Technology		nnology	Different Technolog	
Technology Model	Coefficient	<i>S.E.</i>	Coefficient	S.E.
Constant	4.463	0.992***	4.699	1.031***
Cows	0.893	0.065***	0.946	0.072***
Feed	0.153	0.035***	0.136	0.038***
Labor	0.027	0.033	0.025	0.036
Capital costs	-0.008	0.060	-0.013	0.063
Other inputs	0.124	0.022***	0.115	0.023***
Organic			-1.969	1.162*
Organic × cows			-0.119	0.151
Organic × feed			0.010	0.078
Organic × labor			0.044	0.087
Organic × capital			0.158	0.126
Organic × other			0.028	0.075
West	0.025	0.070	0.022	0.071
Southwest	0.229	0.190	0.204	0.192
Southeast	0.399	0.093***	0.391	0.099***
Cornbelt	-0.057	0.059	-0.062	0.060
East	0.059	0.035*	0.053	0.037
Use of rbST	0.023	0.025	0.024	0.026
Cow Weight	0.597	0.095***	0.586	0.099***
Parlor	-0.013	0.048	-0.019	0.049
Years in dairy	0.041	0.047	0.036	0.049
Pasture-based	0.023	0.032	0.043	0.034
Farm-raised herd	0.020	0.037	0.017	0.035
Farm-raised feed	-0.067	0.027**	-0.067	0.027**
Rented land	-0.043	0.009***	-0.041	0.009***
College education	-0.016	0.047	-0.018	0.047
Years in industry	0.163	0.166	0.199	0.168
Years in industry	-0.034	0.029	-0.041	0.029
Age	-0.518	0.121***	-0.518	0.121***
Off-farm work	0.026	0.008***	0.026	0.008***
Variance of v				
Intercept	-0.936	0.746	-1.009	0.753
Cows	-0.623	0.206***	-0.603	0.215***
Variance of u				
Intercept	-5.311	1.710***	-5.998	1.997***
Cows	0.633	0.364*	0.784	0.425*
Log likelihood	0.808		5.459	

Note: Asterisks denote statistical significance at the 10% (*), 5% (**), and 1% (**) levels. ^aThe PSM subsample comprises all organic farms and matched conventional farms.

Table A1.	Stochastic P	roduction	Frontier	Estimates,	All Farms	
						_

	Same Tech	nnology	Different Technology		
Technology Model	Coefficient	<i>S.E.</i>	Coefficient	<i>S.E.</i>	
Constant	6.345	0.369***	6.439	0.368***	
Cows	0.799	0.022***	0.804	0.022***	
Feed	0.072	0.012***	0.069	0.012***	
Labor	0.020	0.014	0.019	0.014	
Capital costs	0.054	0.021	0.055	0.021	
Other inputs	0.116	0.011***	0.114	0.011***	
Organic			-1.824	1.271*	
$Organic \times cows$			-0.130	0.143	
$Organic \times feed$			0.106	0.088	
$Organic \times labor$			0.053	0.099	
Organic \times capital costs			-0.012	0.136	
$Organic \times other input$			0.041	0.088	
West	-0.022	0.027	-0.023	0.027	
Southwest	-0.138	0.044***	-0.142	0.044***	
Southeast	-0.003	0.028	-0.007	0.027	
Cornbelt	-0.036	0.022	-0.038	0.022*	
East	0.017	0.018	0.017	0.018	
Use of rbST	0.035	0.006***	0.035	0.006***	
Cow Weight	0.348	0.032***	0.341	0.032***	
Parlor	-0.029	0.020	-0.029	0.020	
Dairy production	0.022	0.017	0.021	0.017	
Pasture-based	0.024	0.016	0.031	0.016*	
Farm-raised herd	0.007	0.009	0.008	0.009	
Farm-raised feed	-0.005	0.007	-0.005	0.007	
Rented land	-0.021	0.004***	-0.020	0.004***	
College education	-0.006	0.019	-0.005	0.019	
Years in industry	0.087	0.068	0.089	0.068	

continued

	Orga	Organic		ntional	
	Mean	SE	Mean	SE	Difference in Means
PSM Subsamp	le				
Different	81.7	6.25	83.6	6.70	-1.87
Same	78.1	6.48	83.2	6.62	-5.09***
All farms					
Different	77.0	7.53	79.4	3.25	-2.36***
Same	68.4	8.13	79.4	3.23	-11.04***

 Table 4. Means and Standard Deviations of Technical Efficiency

Note: Asterisks denote statistical significance at the 10% (*), 5% (**), and 1% (***) levels.

Lohr, L. & Park, T.A. (2006)

- Questions:
 - 1. What factors affect the technical efficiency of organic farmers?
 - 2. In particular, do access to soil-improving inputs and producer experience have a significant effect on technical efficiency?
- Contributions:
 - 1. ?? Not very clear...

Methods

- translog SFA, why translog?
- includes inputs and weather covariates that are treated as inputs - does this seem correct? What might be an alternative way to include the weather parameters?
- I still can't figure out what specification they are using I think just corrected OLS though? Definitely no heterogeneity
- Compare new and experienced farmers using separate technologies. In a similar vein to the previous paper, what would have been one simple extension here to provide more compelling results?

	Observations	Overall Efficiency ^a	Minimum	Maximum
New organic farmers ^b	215	0.760	0.617	1.000
Overall farming experience				
Fewer than 5 years	97	0.713	0.617	0.818
5 to 10 years	30	0.722	0.633	0.828
10 to 20 years	33	0.789	0.681	0.913
More than 20 years	55	0.847	0.719	1.000
Use of soil-improving inputs				
No inputs	51	0.709	0.617	0.849
1 or more inputs	164	0.776	0.650	1.000
100% reliance	77	0.828	0.742	1.000
Experienced organic farmers ^b	559	0.713	0.598	1.000
Overall farming experience				
5 to 10 years	151	0.660	0.598	0.732
10 to 20 years	195	0.698	0.620	0.779
More than 20 years	213	0.765	0.668	1.000
Use of soil-improving inputs				
No inputs	66	0.700	0.598	0.942
1 or more inputs	493	0.714	0.612	1.000
100% reliance	202	0.745	0.660	1.000

Table 3. Overall Efficiency and Decomposition by Experience and Soil-Improving Inputs

^a Overall efficiency computed using value shares following Färe and Zelenyuk (2003). ^bNew organic farmers have less than 5 years experience in organic farming. Experienced organic farmers have more than 5 years in organic farming. Total sample size is 774.